K3 carpets on minimal rational surfaces and their smoothings
نویسندگان
چکیده
In this paper, we study K3 double structures on minimal rational surfaces [Formula: see text]. The results show there are infinitely many non-split abstract text] parametrized by text], countably of which projective. For exists a unique structure is non-projective (see [J.-M. Drézet, Primitive multiple schemes, preprint (2020), arXiv:2004.04921, to appear in Eur. J. Math.]). We that all projective carpets can be smoothed smooth surface. One the byproducts proof shows unless embedded as variety degree, carpet Moreover, any with arises flat limit embeddings degenerating 2:1 morphism. rest do not, but still prove smoothing result. further Hilbert points corresponding supported complete linear series if and only contrast, (split) always smooth. [P. Bangere, F. Gallego M. González, Deformations hyperelliptic generalized polarized varieties, arXiv:2005.00342] no higher dimensional analogues paper.
منابع مشابه
Rational curves on K3 surfaces
This document is based on lectures given at the 2007 NATO Advanced Study Institute on ‘Higher-Dimensional Geometry over Finite Fields’, organized at the University of Göttingen by Yuri Tschinkel, and on lectures given at the 2010 summer school ‘Arithmetic Aspects of Rational Curves’, organized at the Institut Fourier in Grenoble by Emmanuel Peyre. This work is supported in part by National Scie...
متن کاملRational Curves and Points on K3 Surfaces
— We study the distribution of algebraic points on K3 surfaces.
متن کاملK3 Surfaces, Rational Curves, and Rational Points
We prove that for any of a wide class of elliptic surfaces X defined over a number field k, if there is an algebraic point on X that lies on only finitely many rational curves, then there is an algebraic point on X that lies on no rational curves. In particular, our theorem applies to a large class of elliptic K3 surfaces, which relates to a question posed by Bogomolov in 1981. Mathematics Subj...
متن کاملK3 Surfaces, Rational Curves, and Rational Points
We prove that for any of a wide class of elliptic surfaces X defined over a number field k, if there is an algebraic point on X that lies on only finitely many rational curves, then there is an algebraic point on X that lies on no rational curves. In particular, our theorem applies to a large class of elliptic K3 surfaces, which relates to a question posed by Bogomolov in 1981. Mathematics Subj...
متن کاملCounting Rational Points on K3 Surfaces
For any algebraic variety X defined over a number field K, and height functionHD onX corresponding to an ample divisorD, one can define the counting functionNX,D(B) = #{P ∈ X(K) | HD(P ) ≤ B}. In this paper, we calculate the counting function for hyperelliptic K3 surfaces X which admit a generically two-to-one cover of P1 × P1 branched over a singular curve. In particular, we effectively constr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics
سال: 2021
ISSN: ['1793-6519', '0129-167X']
DOI: https://doi.org/10.1142/s0129167x21500324